Zeta functions for two-dimensional shifts of finite type

نویسندگان

  • JUNG-CHAO BAN
  • WEN-GUEI HU
  • SONG-SUN LIN
  • YIN-HENG LIN
چکیده

This work is concerned with zeta functions of two-dimensional shifts of finite type. A two-dimensional zeta function ζ0(s) which generalizes the Artin-Mazur zeta function was given by Lind for Z2-action φ. The n-th order zeta function ζn of φ on Zn×∞, n ≥ 1, is studied first. The trace operator Tn which is the transition matrix for x-periodic patterns of period n with height 2 is rotationally symmetric. The rotational symmetry of Tn induces the reduced trace operator τn and ζn = (det (I − sτn)) . The zeta function ζ = ∞ ∏ n=1 (det (I − sτn)) −1 in the x-direction is now a reciprocal of an infinite product of polynomials. The zeta function can be presented in the y-direction and in the coordinates of any unimodular transformation in GL2(Z). Therefore, there exists a family of zeta functions that are meromorphic extensions of the same analytic function ζ0(s). The Taylor series at the origin for these zeta functions are equal with integer coefficients, yielding a family of identities which are of interest in number theory. The method applies to thermodynamic zeta functions for the Ising model with finite range interactions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Time-Discontinuous Finite Element Analysis of Two-Dimensional Elastodynamic Problems using Complex Fourier Shape Functions

This paper reformulates a time-discontinuous finite element method (TD-FEM) based on a new class of shape functions, called complex Fourier hereafter, for solving two-dimensional elastodynamic problems. These shape functions, which are derived from their corresponding radial basis functions, have some advantages such as the satisfaction of exponential and trigonometric function fields in comple...

متن کامل

An Enhanced Finite Element method for Two Dimensional Linear Viscoelasticity using Complex Fourier Elements

In this paper, the finite element analysis of two-dimensional linear viscoelastic problems is performed using quadrilateral complex Fourier elements and, the results are compared with those obtained by quadrilateral classic Lagrange elements. Complex Fourier shape functions contain a shape parameter which is a constant unknown parameter adopted to enhance approximation’s accuracy. Since the iso...

متن کامل

Zeta Functions and Topological Entropy of the Markov-dyck Shifts

The Markov-Dyck shifts arise from finite directed graphs. An expression for the zeta function of a Markov-Dyck shift is given. The derivation of this expression is based on a formula in Keller (G. Keller, Circular codes, loop counting, and zeta-functions, J. Combinatorial Theory 56 (1991), pp. 75– 83). For a class of examples that includes the Fibonacci-Dyck shift the zeta functions and topolog...

متن کامل

Dynamical Zeta Functions for Typical Extensions of Full Shifts

We consider a family of isometric extensions of the full shift on p symbols (for p a prime) parametrized by a probability space. Using Heath– Brown’s work on the Artin conjecture, it is shown that for all but two primes p the set of limit points of the growth rate of periodic points is infinite almost surely. This shows in particular that the dynamical zeta function is not algebraic almost surely.

متن کامل

A Comparative Study of Periods in a Periodic-Finite-Type Shift

Periodic-finite-type shifts (PFT’s) form a class of sofic shifts that strictly contains the class of shifts of finite type (SFT’s). In this paper, we study PFT’s from the viewpoint of certain “periods” that can be associated with them. We define three kinds of periods (descriptive, sequential and graphical) for PFT’s, and investigate the relationships between them. The results of our investigat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015